Class LevenbergMarquardt_F64<S extends DMatrix,​HM extends HessianMath>

java.lang.Object
org.ddogleg.optimization.GaussNewtonBase_F64<ConfigLevenbergMarquardt,​HM>
org.ddogleg.optimization.lm.LevenbergMarquardt_F64<S,​HM>
Direct Known Subclasses:
UnconLeastSqLevenbergMarquardt_F64, UnconLeastSqLevenbergMarquardtSchur_F64

public abstract class LevenbergMarquardt_F64<S extends DMatrix,​HM extends HessianMath>
extends GaussNewtonBase_F64<ConfigLevenbergMarquardt,​HM>

Implementation of Levenberg-Marquardt non-linear least squares optimization. At each iteration the following is sovled for:
(G[k] + v*()x[k] = -g[k] with v ≥ 0
where G[k] = F[k]TF[k] is an approximation to the hessian and is positive semi-definite, F[k] is the Jacobian, v is a tuning parameter that is either a scalar or a vector, x[k] is the step being estimated, and g[k] is the gradient.

Levenberg-Marquardt is a trust-region method but was formulated before trust-region methods had been defined. At each iteration it adjusted the value of 'v''. For smaller values it is closer to a Gauss-Newton step and has super linear convergence while for large values it becomes a gradient step

Levenberg's formulation is as follows:
(JTJ + λ I) = JTr
where λ is adjusted at each iteration.

Marquardt's formulation is as follows:
(JTJ + λ diag(JTJ )) = JTr
where λ is adjusted at each iteration.

  • [1] JK. Madsen and H. B. Nielsen and O. Tingleff, "Methods for Non-Linear Least Squares Problems (2nd ed.)" Informatics and Mathematical Modelling, Technical University of Denmark
  • [2] Peter Abeles, "DDogleg Technical Report: Nonlinear Optimization", Revision 1, August 2018
  • [3] Levenberg, Kenneth (1944). "A Method for the Solution of Certain Non-Linear Problems in Least Squares". Quarterly of Applied Mathematics. 2: 164–168.
  • Field Details

    • MAX_LAMBDA

      public static final double MAX_LAMBDA
      Maximum allowed value of lambda
      See Also:
      Constant Field Values
    • math

      public MatrixMath<S extends DMatrix> math
    • residuals

      public DMatrixRMaj residuals
    • diagOrig

      public DMatrixRMaj diagOrig
    • diagStep

      public DMatrixRMaj diagStep
    • lambda

      protected double lambda
      Dampening parameter. Scalar that's adjusted at every step. smaller values for a Gauss-Newton step and larger values for a gradient step
    • nu

      protected double nu
  • Constructor Details

    • LevenbergMarquardt_F64

      protected LevenbergMarquardt_F64​(MatrixMath<S> math, HM hessian)
  • Method Details

    • initialize

      public void initialize​(double[] initial, int numberOfParameters, int numberOfFunctions)
      Initializes the search.
      Parameters:
      initial - Initial state
      numberOfParameters - number of parameters
      numberOfFunctions - number of functions
    • updateDerivates

      protected boolean updateDerivates()
      Computes derived
      Specified by:
      updateDerivates in class GaussNewtonBase_F64<ConfigLevenbergMarquardt,​HM extends HessianMath>
      Returns:
      true if it has converged or false if it has not
    • computeStep

      protected boolean computeStep()
      Compute a new possible state and determine if it should be accepted or not. If accepted update the state
      Specified by:
      computeStep in class GaussNewtonBase_F64<ConfigLevenbergMarquardt,​HM extends HessianMath>
      Returns:
      true if it has converged or false if it has not
    • checkConvergenceFTest

      protected boolean checkConvergenceFTest​(double fx, double fx_prev)

      Checks for convergence using f-test. f-test is defined differently for different problems

      Returns:
      true if converged or false if it hasn't converged
    • costFromResiduals

      public double costFromResiduals​(DMatrixRMaj residuals)
      Given the residuals compute the cost
      Parameters:
      residuals - (Input) residuals/errors
      Returns:
      Least squares cost
    • computeStep

      protected boolean computeStep​(double lambda, DMatrixRMaj gradient, DMatrixRMaj step)
      Adjusts the Hessian's diagonal elements value and computes the next step
      Parameters:
      lambda - (Input) tuning
      gradient - (Input) gradient
      step - (Output) step
      Returns:
      true if solver could compute the next step
    • maximumLambdaNu

      public boolean maximumLambdaNu()
      If the size of lambda or nu has grown so large it's reached a limit stop optimizing
    • computeResiduals

      protected abstract void computeResiduals​(DMatrixRMaj x, DMatrixRMaj residuals)
      Computes the residuals at state 'x'
      Parameters:
      x - (Input) state
      residuals - (Output) residuals F(x) - Y
    • configure

      public void configure​(ConfigLevenbergMarquardt config)
      Changes the optimization's configuration
      Parameters:
      config - New configuration