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Abstract

DDogleg1 is a general purposed numerics library. This technical report is focused on describing algorithmic details of nonlinear
unconstrained optimization routines found in DDogleg v0.15 and is intended to be used as a reference. A solid understanding of the
basic theory of unconstrained optimization is assumed. Theoretical details will only be touched upon with citations for where to find more
information. Best practices for implementation, tuning, benchmark results, and justifications for specific implementation decisions are all
discussed. API details can be found online at http://ddogleg.org.

This document should be considered a living work in progress and its release is following the philosophy that it is better to release
something than to wait forever for perfection. Corrections and other feedback are welcomed.

1 OPTIMIZATION TECHNIQUES

TABLE 1
Variables and Terminology

x Parameters being optimized. x ∈ RN

xk Value of parameters at iteration k
pk Iteration step, the difference between xk+1 − xk
f(x) Scalar cost function being optimized. f ∈ R
fk Short hand for f(xk)
g(x) Gradient of f(x). g(x) ∈ Rn

gk Short hand for g(xk)
B(x) Hessian matrix or an approximation. B(x) ∈ RN×N

Bk Short hand for B(xk)
H(x) Inverse Hessian matrix or an approximation. H(x) ∈ RN×N

Hk Short hand for H(xk)
positive definite Matrix B is positive definite when yTBy > 0 for all non-zero vectors y

∆k Trust Region size at step k. ∆k ∈ R+

MAX VALUE The largest possible floating point value

This section provides overview of different numerical techniques provided in DDogleg for unconstrained optimization.
Techniques described here can often be applied to different specific problems.

1.1 Trust Region
Trust Region refers to a family of optimization methods that operate by assuming a quadratic model is accurate within a
local ”trust region”. The trust region’s size is adjusted based on the quadratic model’s performance in previous iterations.
A summary of Trust Region, as implemented in DDogleg, is found in Algorithm 1. This implementation2 is primarily based
on the description found in [3].

At every iteration the Trust Region subproblem is solved for, either exactly or approximately:

min
p∈Rn

mk(p) = fk + gTk p+ 1
2p
TBkp s.t. ‖p‖ ≤ ∆k (1)

where m(p) ∈ R is a quadratic model approximating f(xk), p ∈ RN is the step or change in state, B ∈ RN×N is a
symmetric matrix representing the Hessian or an approximation, and ∆k ∈ R+ is the trust region size. The unconstrained
solution to Eq. 1 is easily found by setting the first derivative to zero:

p = −B−1k gk (2)

An exact solution to (1) is expensive to compute and approximate methods are typically used instead. The Cauchy Point
and Dogleg are approximate methods and included in the DDogleg library.

1. DDogleg’s name comes from the double dogleg Trust Region method, which is not included with DDogleg.
2. The more traditional variant described in [1], [2] were considered but found to converge slower in test problems.

http://ddogleg.org
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Algorithm 1 Trust Region
1: k ← 0, ∆0 ∈ (0,∆max)
2: ∆max is the maximum trust region size
3: ∆0 is the initial trust region size. . Section 1.1.3
4: while k < kmax and not done do
5: pk update by optimizing Eq. 1 . Sections 1.1.1 and 1.1.2
6: δf ← f(xk)− f(xk + pk) . Actual reduction in score
7: δm ← mk(0)−mk(pk) = −gTk p− 1

2p
TBkp . Predicted reduction in score

8: ν ← δf/δf . Score reduction ratio
9: if δf ≤ 0 or ν < 1

4 then . Worse score or model poor?
10: ∆k+1 ← 1

2∆k

11: else . The model is good
12: if ν > 3

4 then . Increase region size?
13: ∆k+1 ← min(max(3 ‖pk‖ ,∆k),∆max)
14: else
15: ∆k+1 ← ∆k

16: if δf > 0 and ν > 0 then . Is the solution acceptable?
17: xk+1 ← xk + pk . Update the state
18: done← F-Test or G-Test . Convergence testing
19: else
20: xk+1 ← xk
21: k ← k + 1

1.1.1 Cauchy Point
The Cauchy Point is the solution which minimizes (1) along the steepest descent direction. It is defined as psk = τkp̂

s
k and

is relative to xk−1, where p̂sk is a unit vector, and τk is a scalar.

p̂sk = min
p∈Rn

fk + gTk p s.t. ‖p‖ ≤ ∆k (3)

The length τk is found by minimizing (1) along direction p̂sk

τk = min
τ≥0

mk(τvsk) s.t. ‖τvsk‖ ≤ ∆k (4)

The solution (see Chapter 4 of [1] for details and diagrams) is as follows:

psk = −τk
∆k

‖gk‖
gk (5)

τk =

{
1 gTk Bkgk ≤ 0

min
(

1, ‖gk‖3 /(∆kg
T
k Bkgk)

)
gTk Bkgk > 0

(6)

The formulas in (5) and (6) can be improved upon to avoid numerical issues by removing powers of three and division
by ∆k:

ĝk =
gk
‖gk‖

(7)

psk = −τ̄kĝk (8)

τ̄k =

{
∆k ĝTk Bkĝk ≤ 0

min
(
∆k, ‖gk‖ /(ĝTk Bkĝk)

)
ĝTk Bkḡk > 0

(9)

The predicted reduction in score is found using:

mk(0)−mk(pk) = τ̄k

(
‖gk‖ −

τkĝ
T
k Bkĝk
2

)
(10)

2
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1.1.2 Dogleg
The Dogleg method considers second order terms to provide a more accurate solution to Eq. 1. The optimal solution, as
a function of region size, is a curved trajectory. The Dogleg method approximates this curved trajectory using two line
segments. The first line starts at the xk−1 and ends at the unconstrained Cauchy point. The second heads towards pb

the solution to (2), which is the Gauss-Newton solution. As with equations from Cauchy Point, these equations are not
traditional (see [1], [3]) and have been reformulated to avoid powers of three.

ĝk =
gk
‖gk‖

(11)

puk = − gk

ĝk
TBkĝk

(12)

pbk = −B−1k gk (13)

pdogk =

{
τpuk 0 ≤ τ < 1

puk + (τ − 1)(pbk − puk) 1 ≤ τ ≤ 2
(14)

where Bk is positive definite, and pdogk is the point selected by the Dogleg method. The solution to τ can be easily found
by solving along each line segment. If Bk is not positive definite then gradient descent is used instead.

Algorithm 2 Selection of Dogleg Step
1: if B is positive definite then
2: if

∥∥pb∥∥ < ∆ then . Gauss-Newton solution inside the trust-region?
3: pdog ← pb

4: else if ‖pu‖ ≥ ∆ then . Cauchy point outside the trust-region?
5: pdog ← ∆ pu

‖pu‖
6: else
7: pdog ← intersection of pu → pb and trust-region
8: else
9: pdog ← −∆ g

‖g‖ . Follow gradient to end of trust region

TODO Diagram

1.1.3 Initial Region Size
Selection of the initial trust region size ∆0 is important but typically not discussed in reference material [1]–[3] in detail.
Initial region size is typically considered a tuning parameter that the user is supposed to select through trial and error.
While the Trust region size is dynamically adjusted at each iteration in the Trust Region approach, the initial selection of
the trust region size can significantly influence the final convergence.

Here is an example of a possible failure mode when the trust region’s size is poorly selected. With the dogleg method,
if ∆0 is too small then a Cauchy step is selected repeatedly. The Cauchy Point takes much smaller steps, increasing the
chances of getting stuck in a local minimum.

DDogleg provides two automatic methods for finding the initial region size, with unreliable results. 1) Unconstrained
initial step and 2) Cauchy initial step. With the unconstrained method, the selected algorithm (e.g. Dogleg or Cauchy) selects
a step when given trust region of MAX VALUE. The step it selects is used and the trust region is then set to the length of
that step. This works well in many problems but can be overly agressive and take a very large step into a distant plateau.
The Cauchy initial step method computes the length of a Cauchy step, then sets the region size to be 10x that. This estimate
tends to be conservative will in general converge but can converge slowly.

If the automatic methods fail to produce acceptable results then manual tuning will be necessary. One possible manual
tuning procedure is to start with ∆0 = 1 then trying ∆0 = 100, and if results improved try ∆0 = 10000. If results don’t get
better try 0.1 or other fractions of one.

Recommended Procedure for Selection of Initial Trust Region Size:
1) Turn on verbose output and examine the progress
2) Start with automatic selection using unconstrained initial step
3) If this fails then try Cauchy initial step
4) If performance is still poor follow manual tuning procedure

For instructions on how to switch between the methods described here consult the JavaDoc of ConfigTrustRegion.
A comparison of different initial conditions for different ’toy’ problems is shown in Table 2. In these scenarios, the

Automatic Unconstrained method correctly selected the best initial conditions while all the other methods either tied
unconstrained’s performance or clearly made a poor choice. Unfortunately, these results don’t extrapolate to all problems
and there are situations where the unconstrained method results in failure. For that reason, the default method is the more
conservative Automatic Cauchy.

3
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TABLE 2
Comparison of Initial Region Size

Problem Automatic Automatic Manual Manual
Unconstrained Cauchy 1 100
Fit G B Fit G B Fit G B Fit G B

Powel 2.0e-17 17 17 2.9e-17 30 26 4.9e-18 23 19 2.0e-17 17 17
Powel Singular 7.3e-11 11 11 2.3e-10 13 13 6.7e-11 11 11 7.3e-11 11 11
Helical Valley 2.5e-26 11 8 5.1e-18 11 11 4.1e-33 9 8 2.7e-26 16 8
B.S. Powell 4.2e-31 25 18 3.7e-23 73 58 2.2e-31 25 18 0 62 43
Bundle 2D 3.7e-10 111 36 7.0e-18 111 36 9.0e-10 251 93 3.3e-10 112 37
Bundle 2D [1] 7.0e-19 4 4 7.0e-18 4 4 1.5e-15 5 5 7.0e-18 4 4

Fit is the final fit score where zero is a perfect fit. G is the number of times the gradient was computed.
B is the number of times the Hessian was computed. B is by far the most expensive step.
Unless specified otherwise, all methods use Dogleg with a Cholesky solver.

1 Uses QR with column pivots instead of Cholesky and can handle the nearly singular initial state.

1.2 Scaling
Variable scaling can refer to several different parts of the non-linear optimization problem. Here we will discuss scaling of
the input variables x and scaling of the Hessian Bk internally. Throughout the literature, correct scaling, in all of its forms,
is emphasized as an essential task and that you are a bad person doomed to failure if you skip it.

In reality there are problems where it is essential, but in it does not always help and can sometimes hurt. How can
it hurt? When correctly applied, scaling does not change the location of minimums, but will change the path towards a
minimum [5] and can change which variables are emphasized. Scaling should be treated like other tuning parameters and
experimented with.

In general, when performing floating point arithmetic [4], it is advisable to avoid mixing very large (e.g. 1e12) numbers
with very small (e.g. 1e-12) numbers to reduce round off errors. Thus it is desirable to have all numbers take on values
close to one and have a standard deviation of one.

Another reason to scale variables is to reduce the emphasis on sensitive variables. A sensitive variable is one in which
a small change in it’s value results in a large error, e.g. 1/x2 when x ≈ 0. This can cause the optimization routine to get
stuck since any step causes a large error.

1.2.1 Input Scaling
The optimization cost functions should be designed so that the units of all the variables are on average one with a standard
deviation of one. This scaling cannot be done by DDogleg automatically because it does not have knowledge of each
variable’s range.

Further Reading:
• Chapter 2.2 of [1] contains an illustration of poor scaling.
TODO provide examples in this document.

1.2.2 Hessian Scaling
For Hessian Scaling, the Hessian matrix is re-scaled so that the diagonal elements are approximately one. We will discuss
Hessian scaling in regards to Trust Region (and Levenberg-Marquardt) methods.

Hessian Scaling is done by applying a diagonal matrix D with positive elements to the Trust Region sub-problem (1).
Changing p into its scalled scaled version p̃ = Dp. The trust region is no longer a circle but an ellipse [1], resulting in this
alternative trust region subproblem:

min
p∈Rn

mk(p) = fk + gTk p+ 1
2p
TBkp s.t. ‖Dp‖ ≤ ∆k (15)

As suggested in [1] this is implemented internally in DDogleg by substituting Dp for p, D−1gk for gk, and D−1BkD−1 for
Bk.

DDogleg can be configured to automatically compute and apply Hessian scaling at each iteration or to not apply
Hessian scaling. Automatic scaling parameters are found using second derivatives ∂2f

∂x2
i

from in the Hessian’s diagonal
elements. Variables with larger second derivatives are more sensitive, thus their movement should be restricted more. The
specific formula used in DDogleg is as follows:

Dii
k = max

(
d5,min

(√
|Biik |, d4

))
(16)

where d5 is the minimum allowed scaling value and d4 is the maximum. This approach can handle negative definite
Bk and has the desirable property [5] that the diagonal elements in B̃k = D−1BkD

−1 will typically be B̃iik ≈ 1, unless
clamped or Biik is zero.

4
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1.3 Schur Complement
For sparse systems, with a specific structure, the Schur Complement can be used to greatly reduce the computational
cost. What would have taken hours or days to solve can be solved in seconds or minutes. Bundle Adjustment is one such
problem [6]. The power of the Schur Complement comes from breaking the system into sub-problems. Since the matrix has
a special structure, smaller block diagonal matrices are inverted and sparse fill in [7] is avoided, making it highly efficient.

Let M ∈ RN×N be an invertible square matrix which has been broken up into four submatrices. It can be factorized as
follows:

M =

[
A B
C D

]
=

[
1 0

CA−1 1

] [
A 0
0 D̄

] [
1 A−1B
0 1

]
(17)

It can then be shown that
D̄ = D − CA−1B (18)

This is known as the Schur complement of the block A of matrix M. The Schur Complement of block D of matrix M can
also be found:

Ā = A−BD−1C (19)

We will discuss the former but either can be used. Which one is preferred is simply the one which can be computed fastest
and is dependent on the matrix’s structure.

These relationships can then be used to solve the following system:[
A B
C D

] [
x1
x2

]
=

[
b1
b2

]
(20)

Algorithm 3 Schur Complement to solve a reduced system

1: D̄ = D − CA−1B
2: b̄2 = b2 − CA−1b1
3: D̄x2 = b̄2 . Reduced System
4: Ax1 = b1 −Bx2

For the least squares problem, the Schur Complement is applied to the Jacobian inner product:

JTJ =

[
A B
BT D

]
(21)

Symmetry can be taken advantage of in matrix multiplication and when solving the system, which DDogleg does. The
Schur Complement is implemented in DDogleg by having the user compute the Jacobian in two column matrices.

J = [J1, J2] (22)

The rest is handled automatically. See the SchurJacobian interface and ExampleSchurComplementLeastSquares.

1.4 Linear Algebra
Linear algebra and matrix operations are the workhorses that non-linear optimization is built upon. For Trust Region
methods, linear solvers are extremely important. A linear solver solves equations of the form:

AB = y (23)

where A ∈ RM×N , B ∈ RN is unknown, and y ∈ RM . Solving for B is the most expensive operation, potential source of
numerical errors, and often the cause of fatal exceptions.

A singular matrix is one in which there is no unique solution to B. This can happen when the search hits a region with
zero slope over some of the parameters. A slope of zero indicates that changing the parameter does not affect the cost
function’s value. Not all linear methods can handle this situation, in fact most cannot. Nearly singular systems are a also
problem and some solvers are more sensitive than others.

Dense solvers tend to be very robust and typically have built in support to minimize overflow. There are many tools
that dense solvers can use to mitigate singular and nearly singular systems. For example, they can dynamically change the
order in which they decompose the matrix by pivoting (e.g. LUP and QRP). Methods exist which can even decompose and
solve singular systems, (e.g. QRP and SVD). Default solvers in DDogleg attempt to strike a balance between speed and
robustness. Thus the default will be Choleksy or QR, but if a request for a robust solver is made then QRP might be used
instead. See Table 2 for a fairly dramatic example of how changing the solver can improve performance.

Sparse solvers are another story. While by no means new, they are a younger field and orders of magnitude more
complex to implement. An example of this is Cholesky decomposition. A minimal dense implementation can be done in
around 10 lines of code. A direct sparse equivalent is measured in hundreds of lines of code. Automatic scaling is often
omitted in the sparse case making sparse solvers more prone to overflow. Pivoting is difficult for sparse systems because

5
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the decomposed structure needs to be known in advance. For the reasons just mentioned, when dealing with large sparse
systems, more emphasis is placed on massaging data prior to applying a linear solver.

Fortunately, for a user of DDogleg, almost all of this complexity is hidden from you. For advanced users there is still
the option to choose the solver. Potentially enabling you to solve otherwise unsolvable singular/degenerate systems. Any
of the solvers in Efficicient Java Matrix Library (EJML) [8] can be used in DDogleg. Solvers from other libraries can be used
too, if you wrap them in the appropriate interface.

If you wish to learn more about the computational side of linear algebra then “Fundamentals of Matrix Computations”
[9] and “Direct Methods for Sparse Linear Systems” [7] are recommended for dense and sparse systems, respectively.

2 UNCONSTRAINED MINIMIZATION

TABLE 3
Definitions and API for Unconstrained Minimization

FunctionNtoS Interface for function f(x)
FunctionNtoN Interface for gradient g(x)

Can be computed numerically
UnconstrainedMinimization Interface for unconstrained minimization

TABLE 4
Summary of Unconstrained Minimization Methods.

Method Iteration Convergence Singular Negative-Definite Dense Sparse

Quasi-Newton BFGS O(N2) Super Linear Yes Yes Yes
Trust Region BFGS Cauchy O(N2) Linear Yes Yes Yes Yes
Trust Region BFGS Dogleg O(N2) Super Linear [1] [1] Yes Yes

• Iteration: Runtime complexity of update step. N is number of parameters.
• Convergence: how fast it converged.
• Singular: indicates that it can process singular systems.
• Negative-Definite: indicate that it can process negative definite systems
• Dense and Sparse: indicate that dense and/or sparse matrices can be processed.
• [1] Switches to Cauchy in this situation.

Unconstrained minimization seeks to find a set of parameters which minimizes a function, e.g.:

min
x∈RN

f(x) (24)

where x is an N -dimensional vector and f : RN ⇒ R is a function which outputs a scalar. A global minimum x∗ is a
minimum such that f(x∗) ≤ f(x) for all x. Local minimums are ones where f(x∗) ≤ f(x) for all x ∈ N , where N is
bounded set of subset of RN . For most non-linear problems the best that can be done is to find a local minimum. A good
introduction to the theory on this subject can be found in [1].

In DDogleg, solutions to this problem are found using use the gradient and Hessian. Convergence is found by
examining the function’s rate of change and the gradient, Section 2.1. Computing the Hessian is often tedious and
computationally expensive so iterative approximations of the Hessian are used, Section 2.4. The remaining sections discuss
specific implementation details of applying general purpose algorithms to this problem.

2.1 Convergence Test
All unconstrained minimization algorithms in DDogleg use the same convergence tests. F-Test checks the function’s value
to see if it has converged. G-Test checks the gradient to see if it zero and is at a local minima. To disable a test assign it a
value less than zero.

F-Test ftol · f(x) ≤ f(x)− f(x+ p)
G-Test gtol ≤ ‖g(x)‖∞

2.2 Line Search
Line Search methods are iterative methods where at each iteration they seek to find a step length αk which provides
significant decrease in the cost along the search direction pk when starting at xk. This can be summarized as:

xk+1 = xk + αkpk (25)
fk+1 < βfk (26)

where β is some how defined to describe the meaning of significant.

6
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In addition to significant decrease, curvature conditions also need to be meet. The strong Wolfe condition is used in
some line search algorithms to decide if sufficient decrease and curvature conditions have been meet:

f(xk + αkpk) ≤ f(xk) + c1αk∆fTk pk (27)
|∆f(xk + αkpk)T pk| ≤ c2|∆fTk pk| (28)

where 0 < c1 < c2 < 1.
In DDogleg, two line search methods are provided Fletcher86 [10] and More94 [11]. Both of which explicitly meet

the Wolfe condition when selecting a step length. More94 has shown better convergence and is the default option. The
implementation of More94 contained in DDogleg is a port of csrch function in MINPACK-2 [12].

2.3 Quasi-Newton
Quasi-Newton is a description of a general framework where at each iteration an approximation to a full Newton iteration
is performed. In DDogleg, Quasi-Newton is done by solving for the search direction pk using an approximation to the
inverse Hessian B−1k followed by the line search method of your choice which meets the Wolfe condition.

pk = −B−1k δfk (29)

For computational efficiency and robustness, the inverse Hk = B−1k is estimated directly using BFGS. By estimating
the inverse matrix we avoid the requirement that Bk be positive definite and a costly O(N3) matrix decomposition and
replace it with an inexpensive O(N2) update instead.

2.4 Hessian Approximation
Exact methods of calculating the Hessian can be difficult to derive and expensive to compute. Algorithms which utilize
exact Hessians have faster convergence but this is often offset by additional computational cost [1]. DDogleg uses gradient
based methods for estimating the Hessian. DFP [13] to estimate the Hessian and BFGS (Broyden-Fletcher-Goldfarb-Shanno)
[1], [2]3 to estimate the inverse hessian.

DFP Bk+1 = (I − ρkγksTk )Bk(I − ρkskγTk ) + ρkγkγ
T
k (30)

BFGS Hk+1 = Hk −
Hkγkγ

T
k Hk

γTk Hkγyk
+
sks

T
k

yTk sk
(31)

ρk =
1

γTk sk

where Hk = B−1k , sk = xk+1 − xk, and yk = ∇fk+1 −∇fk.
DDogleg does not explicitly provide support for using an exact Hessian. If you wish to use an exact Hessian this can

be accomplished with a bit of coding by extending base classes in DDogleg. Search code for where BFGS is being used,
extend that class, and override the function where the Hessian is estimated. For example, UnconMinTrustRegionBFGS can
be used to create your own exact Hessian unconstrained minimization trust region implementation.

2.5 Trust Region
Trust Region methods can be directly applied to unconstrained minimization without any change in their framework.
Specific implementation details are listed below:

1) The Hessian is initialized with an identity matrix.
2) The Hessian and inverse are iteratively approximated using DFP and

BFGS.
3) The Hessian is only updated when the Wolfe condition is meet
4) Dogleg-BFGS avoids O(N3) matrix decomposition by computing the in-

verse Hessian directly with BFGS in O(N2) time.
Future Work:

1) Remove the need to compute Bk and Hk by directly computing the
Cholesky factors of Bk.
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TABLE 5
Definitions and API for Unconstrained Nonlinear Least-Squares

x Parameter vector which is being optimized and has n elements. x ∈ RN

f(x) Scalar error function being optimized. f(x) ≥ 0
fk Short hand for f(xk)
F (x) Residual function from RN → RM

J(x) Jacobian of residual function. J(x) ∈ RN×M

B(x) Hessian approximation and is set to B = JT J ∈ RN×N

g(x) Gradient of f(x), which is J(x)TF (x) ∈ RN

gk Short hand for g(xk)
α Mixing coefficent for Levenberg’s and Marquardt’s equations

FunctionNtoM Interface for residuals F (x) ∈ RM

FunctionNtoMxN Interface for Jacobian J(x) ∈ RM,N

Can be computed numerically
UnconstrainedLeastSquares High level interface for this unconstrained least squares

UnconstrainedLeastSquaresSchur Least-Squares using Schur Complement

TABLE 6
Summary of Unconstrained Least-Squares Methods.

Method Iteration Convergence Singular Dense Sparse Schur

Trust Region LS Cauchy O(N3) Linear Yes Yes Yes Yes
Trust Region LS Dogleg O(N3) Super Linear [1] Yes Yes Yes
Levenberg-Marquardt O(N3) Super Linear [2] Yes Yes Yes

• Iteration: Runtime complexity of update step. N is number of parameters.
• Convergence: how fast it converged.
• Singular: indicates that it can process singular systems.
• Negative-Definite: indicate that it can process negative definite systems
• Dense and Sparse: indicate that dense and/or sparse matrices can be processed.
• Schur: If a variant is available that uses the Schur Complement
• [1] Switches to Cauchy in this situation.
• [2] Depends on solver and mixing coefficient, but in most configurations it can handle

singular systems.

3 UNCONSTRAINED LEAST-SQUARES

Unconstrained Least-Squares is a special case of Unconstrained Minimization. It refers to a problem where the function
being optimized has the form

min
x
f(x) =

1

2

m∑
j=1

r2j (x) (32)

where rj(x) is a scalar function j which outputs the residual (predicted value subtracted the observed value) error. By
definition f(x) ≥ 0. Matrix notation can also be used to defined (32):

min
x
f(x) =

1

2
F (x)TF (x) =

1

2
‖F (x)‖22 (33)

where F (x) = [r1(x), r2(x), · · · , rm(x)]T . Then the Jacobian is defined as:

J(x) =


∇r1(x)T

∇r2(x)T

...
∇rm(x)T

 (34)

∇rj(x)T =

[
∂rj
∂x1

,
∂rj
∂x2

, · · · , ∂rj
∂xn

]T
(35)

and the Gradient as

∇f(x) = g(x) =
m∑
j=1

rj(x)∇rj(x) (36)

= J(x)TF (x) (37)

3. A quick search failed to assertain the first paper which fully described BFGS. What appears to be a precursor is discussed in [2] and [1] fully
describes the method but provides no citations.
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3.1 Convergence Test
The same convergence tests used in unconstrained minimization are used with least squares:

F-Test ftol · f(x) ≤ f(x)− f(x+ p)
G-Test gtol ≤ ‖g(x)‖∞

3.2 Levenberg-Marquardt
Levenberg-Marquardt (LM) is a Trust Region based algorithm which was created before Trust Region had been formally
been defined [1], [2], [5]. The main innovation proposed by Levenberg [14] is the dampening parameter λ.

(JTk Jk + λI)pk = −gk (38)

The dampening parameter enables the solver to handle singular systems. Its value is automatically decreased when the
quadratic model is accurate and increased when it is not accurate. Later on Marquardt [15] noted that as λ increased
information in JTk Jk is used less, slowing convergence as it becomes a steepest descent search. Instead Marquardt proposed
the following adjustment:

(JTk Jk + λdiag(JTk Jk))pk = −gk (39)

This would result in larger steps along the direction with smaller gradient, avoiding slow convergence.
DDogleg’s implementation (Algorithm 4) is primarily based upon the description found in [3] but with the ability to

choose a mixture of Levenberg’s and Marquardt’s formulations. Mixing (38) and (39) is advantagous because it allows
you to avoid the negatives of either approach. If a partial derivative is zero then Marquardt’s forumation will produce a
singular matrix. While Levenberg’s forumation will always produce a positive-definite matrix as long as λ is greater than
zero. The amount of mixing is specified using α. If α = 1 then (38) is used while if α = 0 then (39) is used. Any value
between 0 and 1 will result in a mixture of the two equations.

The classes FactoryOptimization and FactoryOptimizationSparse provide easy to use functions for constructing specific
implementations of Levenberg-Marquardt. As inputs they take in a ConfigLevenbergMarquardt and a boolean flag called
robust. If the robust flag is set to true then a solver based on QR with column pivots is used and if false then it used Cholesky
decomposition. The robust variant can handle degenerate matrices found in the Marquardt’s formulation. DDogleg does
not provide support for solving the least squares formation, i.e. Jkpk = −Fk, due to the increase in computational cost and
code complexity having no noticeable improvement in convergence in any situation the author is aware of.

Scaling is done using the same methods described in Section 1.2.

Algorithm 4 Levenberg-Marquardt
1: k ← 0, ν ← 2
2: Bk = JTk Jk
3: while k < kmax and not done do
4: Solve (Bk + λ (αI + (1− α)diag(Bk))) pk = −gk . LM Step
5: δf ← f(xk)− f(xk + pk) . Actual reduction in score
6: δm ← mk(xk)−mk(xk + pk) = −gTk p− 1

2p
TJTk Jkp . Predicted reduction in score

7: ν ← δf/δf . Score reduction ratio
8: if δf ≥ 0 then . Score get better?
9: λ← λ ·max(1/3, 1− (2ν − 1)3)

10: ν = 2
11: pk+1 ← pk
12: done← F-Test or G-Test . Convergence testing
13: else
14: λ← νλ . Emphasize the gradient more
15: ν = 2ν
16: k ← k + 1

3.3 Trust Region
Everything previously discussed about Trust Region still applies in the Least Squares case with the following variables
defined as:

gk = JTk Fk (40)
Bk = JTk Jk (41)
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