Package org.ddogleg.clustering.gmm
Class SeedFromKMeans_F64
java.lang.Object
org.ddogleg.clustering.gmm.SeedFromKMeans_F64
- All Implemented Interfaces:
InitializeGmm_F64
Initializes the mixture models by applying K-Means first. The mean
will be the center of the clusters, variance computed from its members, and weight based on
the total number of points assigned.
-
Constructor Summary
-
Method Summary
Modifier and TypeMethodDescriptionvoid
init
(int pointDimension, long randomSeed) Initializes internal data structures.void
selectSeeds
(LArrayAccessor<double[]> points, List<GaussianGmm_F64> seeds) void
setVerbose
(boolean verbose) Turn on verbose output to standard out
-
Constructor Details
-
SeedFromKMeans_F64
-
-
Method Details
-
init
public void init(int pointDimension, long randomSeed) Description copied from interface:InitializeGmm_F64
Initializes internal data structures. Must be called first.- Specified by:
init
in interfaceInitializeGmm_F64
- Parameters:
pointDimension
- Number of degrees of freedom in each point.randomSeed
- Seed for any random number generators used internally.
-
selectSeeds
- Specified by:
selectSeeds
in interfaceInitializeGmm_F64
- Parameters:
points
- (input) Set of points which is to be clustered.seeds
- (output) List containing storage for the initial Gaussians.
-
setVerbose
public void setVerbose(boolean verbose) Description copied from interface:InitializeGmm_F64
Turn on verbose output to standard out- Specified by:
setVerbose
in interfaceInitializeGmm_F64
-