Class SeedFromKMeans_F64

java.lang.Object
org.ddogleg.clustering.gmm.SeedFromKMeans_F64
All Implemented Interfaces:
InitializeGmm_F64

public class SeedFromKMeans_F64 extends Object implements InitializeGmm_F64
Initializes the mixture models by applying K-Means first. The mean will be the center of the clusters, variance computed from its members, and weight based on the total number of points assigned.
  • Constructor Details

    • SeedFromKMeans_F64

      public SeedFromKMeans_F64(StandardKMeans<double[]> kmeans)
  • Method Details

    • init

      public void init(int pointDimension, long randomSeed)
      Description copied from interface: InitializeGmm_F64
      Initializes internal data structures. Must be called first.
      Specified by:
      init in interface InitializeGmm_F64
      Parameters:
      pointDimension - Number of degrees of freedom in each point.
      randomSeed - Seed for any random number generators used internally.
    • selectSeeds

      public void selectSeeds(LArrayAccessor<double[]> points, List<GaussianGmm_F64> seeds)
      Specified by:
      selectSeeds in interface InitializeGmm_F64
      Parameters:
      points - (input) Set of points which is to be clustered.
      seeds - (output) List containing storage for the initial Gaussians.
    • setVerbose

      public void setVerbose(boolean verbose)
      Description copied from interface: InitializeGmm_F64
      Turn on verbose output to standard out
      Specified by:
      setVerbose in interface InitializeGmm_F64