Package org.ddogleg.optimization.loss
Class LossCauchy
java.lang.Object
org.ddogleg.optimization.loss.LossFunctionBase
org.ddogleg.optimization.loss.LossCauchy
- Direct Known Subclasses:
LossCauchy.Function
,LossCauchy.Gradient
Loss function inspired by the Cauchy distribution, a.k.a Lorentzian loss function.
L(x) = a2(log(1+(x/a)2), where 'x' is the residual and 'a' is a scale parameter. Smaller values of the tuning parameter 'a' make it behave more similar to the L2 loss while larger values make it more robust to outliers.
- Black, Michael J., and Paul Anandan. "The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields." Computer vision and image understanding 63.1 (1996): 75-104.
-
Nested Class Summary
Nested ClassesModifier and TypeClassDescriptionstatic class
Implementation of the smooth Cauchy loss functionstatic class
Implementation of the smooth Cauchy loss gradient -
Field Summary
FieldsFields inherited from class org.ddogleg.optimization.loss.LossFunctionBase
numberOfFunctions
-
Constructor Summary
Constructors -
Method Summary
-
Field Details
-
alpha
protected double alpha
-
-
Constructor Details
-
LossCauchy
protected LossCauchy(double alpha) - Parameters:
alpha
- scale parameter that changes sensitivity to outliers
-