Class LossCauchy

java.lang.Object
org.ddogleg.optimization.loss.LossFunctionBase
org.ddogleg.optimization.loss.LossCauchy
Direct Known Subclasses:
LossCauchy.Function, LossCauchy.Gradient

public abstract class LossCauchy extends LossFunctionBase

Loss function inspired by the Cauchy distribution, a.k.a Lorentzian loss function.

L(x) = a2(log(1+(x/a)2)
, where 'x' is the residual and 'a' is a scale parameter. Smaller values of the tuning parameter 'a' make it behave more similar to the L2 loss while larger values make it more robust to outliers.
  1. Black, Michael J., and Paul Anandan. "The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields." Computer vision and image understanding 63.1 (1996): 75-104.
  • Field Details

    • alpha

      protected double alpha
  • Constructor Details

    • LossCauchy

      protected LossCauchy(double alpha)
      Parameters:
      alpha - scale parameter that changes sensitivity to outliers