Uses of Interface
org.ddogleg.clustering.PointDistance
Packages that use PointDistance
Package
Description
-
Uses of PointDistance in org.ddogleg.clustering
Methods in org.ddogleg.clustering that return PointDistanceModifier and TypeMethodDescriptionPointDistance.newInstanceThread()Creates a new instance which has the same configuration and can be run in parallel.Methods in org.ddogleg.clustering with parameters of type PointDistanceModifier and TypeMethodDescriptionstatic <P> StandardKMeans<P>FactoryClustering.kMeans(@Nullable ConfigKMeans config, ComputeMeanClusters<P> updateMeans, PointDistance<P> pointDistance, DogLambdas.NewInstance<P> factory) High level interface for creating k-means cluster.static <P> StandardKMeans<P>FactoryClustering.kMeans_MT(@Nullable ConfigKMeans config, int minimumForThreads, ComputeMeanClusters<P> updateMeans, PointDistance<P> pointDistance, DogLambdas.NewInstance<P> factory) -
Uses of PointDistance in org.ddogleg.clustering.kmeans
Methods in org.ddogleg.clustering.kmeans with parameters of type PointDistanceModifier and TypeMethodDescriptionvoidInitializeKMeans.initialize(PointDistance<P> distance, long randomSeed) Initializes internal data structures.voidInitializePlusPlus.initialize(PointDistance<P> distance, long randomSeed) voidInitializeStandard.initialize(PointDistance<P> distance, long randomSeed) Constructors in org.ddogleg.clustering.kmeans with parameters of type PointDistanceModifierConstructorDescriptionAssignKMeans(List<P> clusters, PointDistance<P> distancer) StandardKMeans(ComputeMeanClusters<P> updateMeans, InitializeKMeans<P> seedSelector, PointDistance<P> distancer, DogLambdas.NewInstance<P> factory) Configures k-means parametersStandardKMeans_MT(ComputeMeanClusters<P> updateMeans, InitializeKMeans<P> seedSelector, PointDistance<P> distancer, DogLambdas.NewInstance<P> factory) Configures k-means parameters -
Uses of PointDistance in org.ddogleg.clustering.misc
Classes in org.ddogleg.clustering.misc that implement PointDistanceModifier and TypeClassDescriptionclassReturns Euclidean distance squared for double[] points.Methods in org.ddogleg.clustering.misc that return PointDistanceModifier and TypeMethodDescriptionPointDistance<double[]>EuclideanSqArrayF64.newInstanceThread()