Interface UnconstrainedLeastSquares<S extends DMatrix>
- All Superinterfaces:
IterativeOptimization
,Serializable
- All Known Implementing Classes:
UnconLeastSqLevenbergMarquardt_F64
,UnconLeastSqTrustRegion_F64
Non-linear least squares problems have a special structure which can be taken advantage of for optimization.
The least squares problem is defined below:
F(x) = 0.5*sum( i=1:M ; fi(x)2 )
where fi(x) is a function from ℜN to ℜ. M is number of functions, and N
is number of fit parameters. M ≥ N
fi(x) = observed - predicted, which is known as the residual error.
F-Test: ftol ≤ 1 - f(x+p)/f(x)
G-Test: gtol ≤ ||g(x)||inf
An absolute f-test can be done by checking the value of getFunctionValue()
in each iteration.
NOTE: The function computes the M outputs of the fi(x), residual error functions, NOT [fi(x)]2
FORMATS:
Input functions are specified using FunctionNtoM
for the set of M
functions, and FunctionNtoMxN
for the Jacobian. The function's output is a vector of length M,
where element i correspond to function i's output. The Jacobian is an array containing the partial
derivatives of each function. Element J(i,j) corresponds to the partial of function i and parameter j.
The array is stored in a row major format. The partial for F(i,j) would be stored at index = i*N+j in the data array.
NOTE: If you need to modify the optimization parameters this can be done inside the 'function'.
-
Method Summary
Modifier and TypeMethodDescriptiondouble
Returns the value of the objective function being evaluated at the current parameters value.double[]
After each iteration this function can be called to get the current best set of parameters.void
initialize
(double[] initial, double ftol, double gtol) Specify the initial set of parameters from which to start from.void
setFunction
(FunctionNtoM function, @Nullable FunctionNtoMxN<S> jacobian) Specifies a set of functions and their Jacobian.Methods inherited from interface org.ddogleg.optimization.IterativeOptimization
isConverged, isUpdated, iterate, setVerbose
-
Method Details
-
setFunction
Specifies a set of functions and their Jacobian. See class description for documentation on output data format.- Parameters:
function
- Computes the output of M functions fi(x) which take in N fit parameters as input.jacobian
- Computes the Jacobian of the M functions. If null a numerical Jacobian will be used.
-
initialize
void initialize(double[] initial, double ftol, double gtol) Specify the initial set of parameters from which to start from. Call aftersetFunction(org.ddogleg.optimization.functions.FunctionNtoM, org.ddogleg.optimization.functions.FunctionNtoMxN<S>)
has been called.- Parameters:
initial
- Initial parameters or guess with N elements..ftol
- Relative threshold for change in function value between iterations. 0 ≤ ftol ≤ 1. Try 1e-12gtol
- Absolute threshold for convergence based on the gradient's norm. 0 disables test. 0 ≤ gtol. Try 1e-12
-
getParameters
double[] getParameters()After each iteration this function can be called to get the current best set of parameters. -
getFunctionValue
double getFunctionValue()Returns the value of the objective function being evaluated at the current parameters value. If not supported then an exception is thrown.- Returns:
- Objective function's value.
-