Uses of Interface
org.ddogleg.optimization.functions.FunctionNtoS
Packages that use FunctionNtoS
Package
Description
-
Uses of FunctionNtoS in org.ddogleg.optimization
Methods in org.ddogleg.optimization with parameters of type FunctionNtoSModifier and TypeMethodDescriptionstatic boolean
DerivativeChecker.gradient
(FunctionNtoS func, FunctionNtoN gradient, double[] param, double tol) Compares the passed in gradient function to a numerical calculation.static boolean
DerivativeChecker.gradient
(FunctionNtoS func, FunctionNtoN gradient, double[] param, double tol, double differenceScale) static FunctionNtoN
FactoryNumericalDerivative.gradientForwards
(FunctionNtoS func) static boolean
DerivativeChecker.gradientR
(FunctionNtoS func, FunctionNtoN gradient, double[] param, double tol) Compares the passed in gradient function to a numerical calculation.static boolean
DerivativeChecker.gradientR
(FunctionNtoS func, FunctionNtoN gradient, double[] param, double tol, double differenceScale) void
UnconstrainedMinimization.setFunction
(FunctionNtoS function, FunctionNtoN gradient, double minFunctionValue) Specifies the function being optimized. -
Uses of FunctionNtoS in org.ddogleg.optimization.derivative
Constructors in org.ddogleg.optimization.derivative with parameters of type FunctionNtoSModifierConstructorDescriptionNumericalGradientFB
(FunctionNtoS function) NumericalGradientFB
(FunctionNtoS function, double differenceScale) NumericalGradientForward
(FunctionNtoS function) NumericalGradientForward
(FunctionNtoS function, double differenceScale) -
Uses of FunctionNtoS in org.ddogleg.optimization.loss
Subinterfaces of FunctionNtoS in org.ddogleg.optimization.lossModifier and TypeInterfaceDescriptioninterface
Residual loss function for regression.Classes in org.ddogleg.optimization.loss that implement FunctionNtoSModifier and TypeClassDescriptionstatic class
Implementation of the smooth Cauchy loss functionstatic class
Implementation of the Huber loss functionstatic class
Implementation of the smooth Huber loss functionstatic class
class
Iteratively Reweighted Least-Squares (IRLS) allows the weights to be recomputed every iteration.static class
static class
Implementation of the Tukey loss functionclass
A weighted least squares cost function. -
Uses of FunctionNtoS in org.ddogleg.optimization.trustregion
Methods in org.ddogleg.optimization.trustregion with parameters of type FunctionNtoSModifier and TypeMethodDescriptionvoid
UnconMinTrustRegionBFGS_F64.setFunction
(FunctionNtoS function, FunctionNtoN gradient, double minFunctionValue) -
Uses of FunctionNtoS in org.ddogleg.optimization.wrap
Classes in org.ddogleg.optimization.wrap that implement FunctionNtoSModifier and TypeClassDescriptionclass
Converts a least squares function into a nonlinear optimization function.Fields in org.ddogleg.optimization.wrap declared as FunctionNtoSModifier and TypeFieldDescriptionprotected FunctionNtoS
CachedGradientLineFunction.function
protected FunctionNtoS
CachedNumericalGradientLineFunction.function
Methods in org.ddogleg.optimization.wrap with parameters of type FunctionNtoSModifier and TypeMethodDescriptionvoid
QuasiNewtonBFGS_to_UnconstrainedMinimization.setFunction
(FunctionNtoS function, FunctionNtoN gradient, double minFunctionValue) Constructors in org.ddogleg.optimization.wrap with parameters of type FunctionNtoSModifierConstructorDescriptionCachedGradientLineFunction
(FunctionNtoS function, FunctionNtoN gradient)