Class TrustRegionLeastSqBase_F64<S extends DMatrix,HM extends HessianMath>
java.lang.Object
org.ddogleg.optimization.GaussNewtonBase_F64<ConfigTrustRegion,HM>
org.ddogleg.optimization.trustregion.TrustRegionBase_F64<S,HM>
org.ddogleg.optimization.trustregion.TrustRegionLeastSqBase_F64<S,HM>
- All Implemented Interfaces:
VerbosePrint
- Direct Known Subclasses:
UnconLeastSqTrustRegion_F64,UnconLeastSqTrustRegionSchur_F64
public abstract class TrustRegionLeastSqBase_F64<S extends DMatrix,HM extends HessianMath>
extends TrustRegionBase_F64<S,HM>
Base class for all least squares trust region implementations.
-
Nested Class Summary
Nested classes/interfaces inherited from class org.ddogleg.optimization.trustregion.TrustRegionBase_F64
TrustRegionBase_F64.ParameterUpdate<S extends DMatrix>Nested classes/interfaces inherited from class org.ddogleg.optimization.GaussNewtonBase_F64
GaussNewtonBase_F64.Mode -
Field Summary
FieldsModifier and TypeFieldDescriptionprotected FunctionNtoMprotected LossFunctionGiven the residuals it computes the "Loss" or costprotected @Nullable LossFunctionGradientGradient of the loss function.protected DMatrixRMajprotected DMatrixRMajFields inherited from class org.ddogleg.optimization.trustregion.TrustRegionBase_F64
gradientNorm, parameterUpdate, tmp_pFields inherited from class org.ddogleg.optimization.GaussNewtonBase_F64
config, ftest_val, fx, gradient, gtest_val, hessian, hessianScaling, mode, p, postUpdateAdjuster, sameStateAsCost, totalFullSteps, totalSelectSteps, verbose, verboseLevel, x, x_next -
Constructor Summary
ConstructorsModifierConstructorDescriptionprotectedTrustRegionLeastSqBase_F64(TrustRegionBase_F64.ParameterUpdate<S> parameterUpdate, HM hessian) -
Method Summary
Modifier and TypeMethodDescriptionprotected booleanacceptNewState(boolean converged, double fx_candidate) protected doubleThis function was created for least squares which requires special set up due to the Loss functionprotected doublecost(DMatrixRMaj x) Computes the function's value at xvoidsetLoss(LossFunction loss, LossFunctionGradient lossGradient) Specifies the loss function.Methods inherited from class org.ddogleg.optimization.trustregion.TrustRegionBase_F64
checkConvergenceFTest, computeStep, configure, considerCandidate, getConfig, initialize, setVerbose, solveCauchyStepLength, updateDerivatesMethods inherited from class org.ddogleg.optimization.GaussNewtonBase_F64
applyHessianScaling, checkConvergenceGTest, computeHessianScaling, computeHessianScaling, computePredictedReduction, functionGradientHessian, initialize, iterate, mode, setVerbose, undoHessianScalingOnParameters
-
Field Details
-
functionResiduals
-
residuals
-
lossFunc
Given the residuals it computes the "Loss" or cost -
lossFuncGradient
Gradient of the loss function. If null then squared error is assumed and this step can be skipped. -
storageLossGradient
-
-
Constructor Details
-
TrustRegionLeastSqBase_F64
protected TrustRegionLeastSqBase_F64(TrustRegionBase_F64.ParameterUpdate<S> parameterUpdate, HM hessian)
-
-
Method Details
-
setLoss
Specifies the loss function. -
computeCostAtInitialization
protected double computeCostAtInitialization()Description copied from class:TrustRegionBase_F64This function was created for least squares which requires special set up due to the Loss function- Overrides:
computeCostAtInitializationin classTrustRegionBase_F64<S extends DMatrix,HM extends HessianMath>
-
acceptNewState
protected boolean acceptNewState(boolean converged, double fx_candidate) - Overrides:
acceptNewStatein classTrustRegionBase_F64<S extends DMatrix,HM extends HessianMath>
-
cost
Description copied from class:TrustRegionBase_F64Computes the function's value at x- Specified by:
costin classTrustRegionBase_F64<S extends DMatrix,HM extends HessianMath> - Parameters:
x- parameters- Returns:
- function value
-